Welcome to the Chemistry Department at Reigate College.
My name is Louise Harris, and I am Head of Chemistry A Level. Studying Chemistry at A Level is both fascinating and challenging, and I am delighted you have chosen to study the course here at Reigate College. I look forward to welcoming you to the Chemistry department and meeting you in person at the beginning of the academic year.
To make sure you are prepared for the course, over the coming months I would like you to complete a series of tasks and activities. These activities will give you a better idea of the kinds of topics you will be studying and the skills you will develop over on the course. Each task should be completed on your own, but there will be the chance to discuss what you have learnt with your fellow Chemists in September.
The tasks are organised in three distinct steps and should all be completed by Choices Day on 27 August 2025. This is to give you the best insight into what the courses will be like and/or help prepare you for them.
Please note, some Course Leaders (for example for Music) may release their tasks earlier, as they may form part of the College’s audition process. If this applies to you, you’ll be notified separately.
New Starters Course Tasks and Activities
Release date | Suggested Completion Dates | |
Explore your Subject | 1 June | 1 July |
Get Going | 1 June | 1 August |
Aim High | 1 June | 1 September |
The following tasks and activities are designed to start preparing you for Chemistry A Level.
The Chemistry of Fireworks
Chemistry has many uses in everyday life. Some applications are not as obvious as others, but fireworks are a very visual example of seeing chemistry at work.
How much do you actually know about the chemistry behind fireworks?
Watch the following clip to find out more about how fireworks use chemistry.
The infographic below summarises how fireworks work and how you can determine the colour a firework will be, based on the salt used.
Source: https://www.compoundchem.com/2013/12/30/the-chemistry-of-fireworks/
Developing your Chemistry Skills
Fireworks have a really obvious visual and sound effect that is easily observed, but as chemists, one of the most important skills you will develop is understanding what is happening at the atomic and molecular level, i.e. what you cannot see.
You will already have an understanding from GCSE of what is happening in terms of atoms and molecules through learning about atomic structure. The easiest way to show atomic structure is through dot and cross diagrams.
Dot and Cross Diagram Tasks
Refresh your memory about dot and cross diagrams by having a go at drawing the following ionic salts that could be used in fireworks.
PLEASE NOTE: Please jot all your answers (for q1-12) onto lined paper and bring them with you to your first chemistry lesson of the autumn term.
1. Calcium Chloride CaCl2 (Remember this is an ionic compound)
2. Barium Chloride (This one is also ionic, make sure you have the correct formula before you start)
If you’re having trouble remembering these, follow the link for a recap of ionic dot and cross diagrams: https://www.bbc.co.uk/bitesize/guides/ztc6w6f/revision/2
3. Can you draw a dot and cross diagram for strontium carbonate SrCO3?
[The carbonate ion CO3 2-, is covalent in structure. See if you can work out what it will look like. If you get stuck, look it up!]
4. Magnesium, aluminium and titanium are also used in their metallic form to give silver and white fireworks. Draw a simplified diagram of metallic bonding.
Flame Test Tasks
The different colours seen when salts in the fireworks ignite are related to the atomic structure of the ions. You should have carried out flame tests at GCSE and know that certain metal ions give a specific colour flame that can be used as a test for the ion. Do you know what is happening at the atomic level to give these coloured flames?
The following link is to a really useful A Level resource called Chemguide. It summarises how to carry out a flame test but also explains why you see the distinctive colours for metals when you carry out a flame test.
https://www.chemguide.co.uk/inorganic/group1/flametests.html
5. Read through this webpage above and then copy out the diagram below. Annotate it to explain why sodium has a yellow flame.
The Burning of Black Powder
Fireworks require fuels to be burnt to supply the energy required to excite the electrons from their ground state.
This is not a simple combustion reaction as you can see it does not include oxygen. The potassium nitrate is the oxidiser, in this instance. We can determine how much energy we will release from a mole of a fuel by carrying out a simple experiment.
Combustion is an exothermic reaction (heat is lost from the system) and so heat is released to the surroundings and can be used to heat water.
The apparatus below can be set up to measure the energy transferred to water by burning a liquid fuel like hexane.
6. Write a balanced chemical equation for the complete combustion of hexane.
Enthalpy change is measured in kJ/mol written as kJmol-1. The moles in this case are the moles of the fuel you have burnt to get a certain increase in temperature of the water.
We can use the following equation to calculate the energy transferred to the water when we burn hexane:
Q = mcΔT
Q is the energy transferred to the water in J
m is the mass of the water
c is the specific heat capacity of water which is 4.18 JK-1 g-1
ΔT is the temperature change of the water
7. What equation would we need to use to calculate the number of moles of hexane burnt?
8. If 1.50g of hexane is burnt calculate the number of moles burnt.
9. If you have 100cm3 (or 100g) of water in the calorimeter and your initial water temperature is 22oC and your final water temperature 35oC, calculate the energy transferred to the water (Q).
Your value of Q is in J, convert it to kJ.
10. Calculate the enthalpy change in kJmol-1 using your value of Q in kJ and divide it by the number of moles of hexane burnt. This enthalpy change will be negative as the reaction is exothermic.
This value is the enthalpy change of combustion for hexane. This tells us how much energy we can expect to get from burning 1 mole of hexane. This is useful because it allows us to compare one fuel with another.
Spectroscopy
The colour of a flame can give us a useful test for metal ions, however, if you pass the light emitted from the flame through a prism or diffraction grating you can get even more information about the wavelengths of light emitted by an atom. This is an analytical technique that can be very useful and is called spectroscopy.
11. Research how emission and absorption spectra can be generated and how they can be used to identify unknown elements.
This link is a useful starting point: https://www.youtube.com/watch?v=xhaDuAkpF8A
Other types of spectroscopy also involve the absorption of energy being used as an identification technique. One such type of spectroscopy is Infrared spectroscopy, instead of electrons absorbing energy, chemical bonds absorb it, and this results in bonds stretching and bending.
Infrared spectroscopy allows us to identify the functional groups present in molecules which is a very useful tool for identifying unknown structures.
12. Find out more about how Infrared spectroscopy works and how it can be used, starting with the link below.
Organic Chemistry
For the ‘Explore your Subject’ tasks we started looking at what is happening in molecules at atomic level. For your ‘Get Going’ tasks we are going to look at molecules, with a focus on organic molecules.
You should record your answers in a Word document and bring them with you at the beginning of term. If you do not have access to a PC then please just write your answers onto lined paper, and bring that with you instead.
Homologous Series
Organic molecules are those which contain carbon. Organic molecules can be grouped together by their functional groups which, in turn, give us a homologous series.
1. Write down a definition for a homologous series.
2. Using your GCSE knowledge, create two summary sheets that summarise your knowledge of alkanes and alkenes. The summaries should include the following information:
- General formula
- Names, formula and full structural formula (a drawing showing all of the atoms and bonds) for the first 10 members of the homologous series
- Properties e.g. solubility, trends in boiling points as the molecules get longer etc.
- Reactions that the homologous series undergo e.g substitution or addition reactions
- A simple chemical test to tell the difference between alkanes and alkenes
3. Another homologous series that you will need to know for A Level is alcohols. Create a summary for alcohols (-OH) similar to your alkane and alkene summaries above. If you have not come across alcohols in Chemistry before, then read through pages 1, 2 and 3 of the link below before creating your summary.
https://www.bbc.co.uk/bitesize/guides/z3v4xfr/revision/1
Practical Techniques in Organic Chemistry
Alcohols can be oxidised using acidified potassium dichromate(IV). Primary alcohols will be oxidised to aldehydes and then carboxylic acids, so ethanol will make ethanal and then ethanoic acid (see the reaction below).
To ensure this reaction happens, you will need to heat your ethanol with acidified potassium dichromate(IV). Acidified potassium dichromate(IV) is represented as [O] in the equation opposite. In order to get pure ethanal or ethanoic acid, once your reaction is complete, you will need to use a separation technique such as distillation.
4. Draw a labelled diagram showing how you would set up distillation equipment.
5. Explain how distillation separates two mixed liquids.
Another separation technique you will have used before is paper chromatography. The diagram below shows thin layer chromatography, which is set up in the same way as paper chromatography except you use a silica plate rather than paper.
6. Write a short method explaining how to carry out paper chromatography
7. Describe how you would analyse your chromatogram to decide if you have a pure substance or not.
Stretch Yourself
In organic chemistry we often heat volatile substances, so that they can be heated sufficiently to react without evaporating we use a technique called Reflux.
8. Find out what apparatus you would need to carry out reflex. Draw a labelled diagram and explain why it would be a good way to heat volatile compounds.
Inorganic Chemistry
Group 1 Elements
Elements in the Periodic Table are arranged in groups. Elements in the same group have characteristic properties and exhibit trends in their reactivity. Group 1 elements of the periodic table are known as the Alkali metals. You will have looked at the reactivity and trends in their behaviour at GCSE.
9. Describe the trend in reactivity of the group 1 metals with water and give balanced chemical equations for the reactions.
10. The graph opposite shows the size of the atomic radii of the group 1 elements. Describe the trend that you see and explain why we see this trend.
11. Studying the chemistry of elements is really useful, and in 2019 the Nobel Prize for Chemistry was awarded for Lithium Ion batteries. Follow the link below to find out more about this application of group 1 metals.
Stretch Yourself
12. At A Level we start investigating group 2 metals. Using your knowledge of group 1, predict the following for group 2:
- The trend in reactivity as you go down the group
- The reaction with water, giving balanced equations
- The trend in atomic radii
Group 7 Elements
13. Group 7 elements are known as the halogens. They will also exhibit trends in their reactivity. Compare the reactivity of the group 1 and 7 elements as you go down the group.
Taking the four elements in turn:
- Fluorine,
- Chlorine,
- Bromine,
- Iodine
Produce a table that compares the state of each element at room temperature and then its colour in an aqueous solution.
The following video link gives a good overall summary of halogens and their reactions: https://www.youtube.com/watch?v=yW_C10cEzMk
Stretch Yourself
14. When choosing to study Chemistry, the most important thing is that you have a real interest in the subject outside of the syllabus. How much do you know about the elements of the Periodic Table? Use the following links to find out more about individual elements and their reactions.
Periodic Table Videos
http://www.periodicvideos.com/
Periodic Table Podcasts
For this section of tasks, we would like you to download and complete the worksheet below in preparation for the Elements of Life (EL) component of the A Level Chemistry course.
Click here to download worksheet
You should bring your completed worksheet with you at the start of the course. If you are unable to print it, please write your answers on a piece of lined paper and bring that with you instead.